الأعدادالمركبةشرحشاملومبسط
2025-08-30 15:29دمشقمقدمةعنالأعدادالمركبة
الأعدادالمركبة(ComplexNumbers)هيأعدادتتكونمنجزأين:جزءحقيقيوجزءتخيلي.تُكتبعادةًبالصيغةa+bi،حيث:
-aهوالجزءالحقيقي
-bهوالجزءالتخيلي
-iهيالوحدةالتخيلية،حيثi²=-1الأعدادالمركبةشرحشاملومبسط
تعتبرالأعدادالمركبةامتدادًاللأعدادالحقيقيةوتلعبدورًاأساسيًافيالعديدمنالمجالاتمثلالهندسةالكهربائية،الفيزياء،والرياضياتالمتقدمة.
تاريخالأعدادالمركبة
ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتكعيبية.ومعذلك،لميتمقبولهاعلىنطاقواسعإلافيالقرنالثامنعشرعندماأثبتعلماءمثلليونهارتأويلروكارلفريدريشغاوسأهميتهافيالتحليلالرياضي.
خصائصالأعدادالمركبة
الجمعوالطرح:
عندجمعأوطرحعددينمركبين،نجمعأونطرحالأجزاءالحقيقيةوالتخيليةبشكلمنفصل.
مثال:
(3+2i)+(1+4i)=(3+1)+(2+4)i=4+6i
الأعدادالمركبةشرحشاملومبسطالضرب:
الأعدادالمركبةشرحشاملومبسط
لضربعددينمركبين،نستخدمخاصيةالتوزيعمعتذكرأنi²=-1.
مثال:
(2+3i)×(1+2i)=2×1+2×2i+3i×1+3i×2i=2+4i+3i+6i²=-4+7iالقسمة:
الأعدادالمركبةشرحشاملومبسط
لقسمةعددينمركبين،نضربالبسطوالمقامفيمرافقالمقاملإزالةالجزءالتخيليمنالمقام.
مثال:
(3+4i)÷(1+2i)=[(3+4i)(1-2i)]÷[(1+2i)(1-2i)]=(11-2i)/5=2.2-0.4i
التمثيلالهندسيللأعدادالمركبة
يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالإحداثي(المستوىالمركب)،حيث:
-المحورالأفقييمثلالجزءالحقيقي(a)
-المحورالرأسييمثلالجزءالتخيلي(b)
تُعرفهذهالطريقةبتمثيلأرجاند،وتُستخدملفهمالعملياتالرياضيةمثلالدورانوالتمدد.
الأعدادالمركبةشرحشاملومبسطتطبيقاتالأعدادالمركبة
- الهندسةالكهربائية:تُستخدمفيتحليلدوائرالتيارالمتردد(AC).
- معالجةالإشارات:تساعدفيتحويلاتفورييهلتحليلالترددات.
- الميكانيكاالكمية:تلعبدورًاأساسيًافيمعادلاتالموجةوالدوالالموجية.
الخلاصة
الأعدادالمركبةليستمجردمفهومنظري،بللهاتطبيقاتعمليةواسعةفيالعلوموالهندسة.فهمهايتطلبإدراكالعلاقةبينالجزأينالحقيقيوالتخيلي،وكيفيةتفاعلهمافيالعملياتالحسابيةالمختلفة.
الأعدادالمركبةشرحشاملومبسطإذاكنتمهتمًابالرياضياتالمتقدمة،فإنإتقانالأعدادالمركبةسيفتحلكأبوابًاجديدةفيعالمالتحليلالرياضيوالتطبيقاتالعلمية!
الأعدادالمركبةشرحشاملومبسط